CIGRE conference April 2017 in St. Petersburg, Russia

Improvement of Line Protection by means of the novel Reactance Method

J. Blumschein, G. Steynberg, Dr. T. Liebach
Siemens AG, Germany
Why a new method was developed?
Fault on a double-end fed line

Distance Protection Relays make the fault detection based on measuring voltage and current

Following parameter are influencing of the correct impedance calculation:

- Load flow
- Value of the failure impedance RF
- Short circuit power of sources on both line ends
- Complexity of network topology
Resistive fault, fed from both ends of the line

- Fault current from remote end causes additional voltage drop at fault resistance R_F

$$U_A = (m \cdot Z_L + R_F) \cdot I_A + R_F \cdot I_B$$

- Additional impedance depends on the relation between the fault current I_B from the remote end and the local fault current I_A

$$Z_A = (m \cdot Z_L + R_F) + \frac{I_B}{I_A} R_F$$

- If the fault currents I_A and I_B have different angles the additional impedance will have a reactive component

$$\Delta X = \frac{|I_B|}{|I_A|} \cdot R_F \cdot \sin(\angle(I_B, I_A))$$
Changes of the impedance calculation by the distance protection for double-end fed fault location

\[\Delta X = \left| \frac{I_B}{I_A} \right| \cdot R_F \cdot \sin(\angle(I_B, I_A)) \]

- during load flow phase angle of sending end leads phase angle of the receiving end (in case of load export the phase angle of \(I_A \) leads the phase angle of \(I_B \))
- idea in principle: \(\rightarrow \) elimination of the reactance measurement error \(\Delta X \)
Multiply with a compensation quantity

\[U_F = R_F \cdot I_F \]

Multiplication with \(I_{CMP} \):

\[U_F \cdot I_{CMP}^* = R_F \cdot I_F \cdot I_{CMP}^* \]

\[\text{Im}(U_F \cdot I_{CMP}^*) = 0 \]

The compensation quantity is the conjugate complex value of the fault current \(I_F \).

If phase angles of currents \(I_{CMP} \) and \(I_F \) are equal, then result is real.
Compensation quantity for phase to ground faults

Positive, negative and zero sequence networks are connected in series

Positive sequence network includes the sources

Zero sequence current or negative sequence current can be used as compensation quantity

Sequence which is more homogenous should be preferred

\[X = \frac{\sin(\varphi) \cdot \text{Im}[U_A \cdot I_0^* e^{-j \delta_{\text{Cmp},0}}]}{\text{Im}[e^{j \varphi} \cdot I_A \cdot I_0^* e^{-j \delta_{\text{Cmp},0}}]} \]

\[\delta_{\text{Cmp},0} = \text{arg} \left(\frac{Z_{0,A} + Z_{0,B} + Z_{0,L}}{(1 - m) \cdot Z_{0,L} + Z_{0,B}} \right) \]
Simulation result for a two-phase fault
Resistance fault at 50% of the line length

Using the new algorithm the fault is seen in zone Z1!
Difficulties in choosing the right fault loops

Virtual impedance and impedance in the case of fault changes

Virtual impedance and impedance in the case of fault changes

line tower

line-line-earth short circuit with transition resistance R_F - measured loop impedance
Classical scheme of loop selection (decision tree)

- Each criteria can respond with true or false only
- Execution of a choice of criteria
- Some criteria exists multiple times in the decision tree
Advantages of new scheme

- Excecition of all criteria
- Each criteria can respond with 0.0 – 1.0 or “unvalid”
- Each criteria exists only once
- Wrong response of some criteria does not lead to a wrong behavior of the algorithm
- Importance of criteria can be adjusted by weighting
- Uncertainty of criteria can be expressed with quality
Voltage magnitude criteria

The lower the voltage, the higher the quality of the result.
Concept of Multi-Criteria Loop Selector (MLS)

„n“ – criteria:
criteria 1
criteria 2
...
criteria n

The MLS calculates each cycle a quality for each loop
The loop with the highest quality which exceeds a dynamic threshold will be chosen
Fault at 50% of line (simulation with test equipment)

A = L1
B = L2
C = L3
G = E
Fault at 90% of line
(RTDS network model, series compensated line)

A = L1
B = L2
C = L3
G = E

L2-L3-E
Conclusion

- Reactance method gives the possibility to compensate the significant influence by resistive faults on heavy loaded lines in electrical grids with direct earthed starpoints.

- The MLS is optimized for all network topologies.

- New algorithm are better prepared for the decentralized energy generation.

- Latest technology of numerical protection relays are powerful enough for the more complexe algorithm.
Back up slides
Stromhöhe-Kriterium

Je höher der Strom, desto höher das Qualitätsmerkmal
Impedanz-Kriterium

Je kleiner das Verhältnis zw. gemessenem X und parametriertem X, desto höher ist die Qualität der zugehörigen Schleife